
Network analysis of measles data 1

A Network-based Analysis of the 1861 Hagelloch Measles Data
Penn State Department of Statistics Technical Report #11-03

Chris Groendyke1! , David Welch1,2, David R. Hunter 1,2

1 Department of Statistics, Pennsylvania State University, University Park, PA, U.S.A.

2 Center for Infectious Disease Dynamics, Pennsylvania State University, University Park,

PA, U.S.A.

∗ E-mail: cxg928@psu.edu

Abstract

In this article, we demonstrate a statistical method for Þtting the parameters of a sophisticated network

and epidemic model to disease data. The pattern of contacts between hosts is described by a class of

Exponential-family Random Graph Models (ERGMs) while the transmission process that runs over the

network is modeled as a stochastic Susceptible-Exposed-Infectious-Removed (SEIR) epidemic. We Þt

these models to very detailed data from a 1861 measles outbreak in Hagelloch, Germany. The network

models include parameters for all recorded host covariates including age, sex, household and classroom

membership and household location while the SEIR epidemic model has exponentially distributed trans-

mission times with gamma distributed latent and infective periods. This approach allows us to make

meaningful statements about the structure of the populationÑseparate from the transmission processÑ

as well as to provide estimates of various biological quantities of interest, such as the basic reproductive

number, R0. Using reversible jump Markov chain Monte Carlo, we produce samples from the joint poste-

rior distribution of all the parameters of this modelÑthe network, transmission tree, ERGM parameters

and SEIR parametersÑand perform Bayesian model selection to Þnd the best-Þtting network model. We

compare our results with those of previous analyses and show that the ERGM network model better Þts

the data than a Bernoulli network model previously used. We also provide a software package, written

in R, that performs this type of analysis.
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Author Summary

Networks provide an excellent, ßexible model of the contact structure in a host population through which

a disease spreads. Yet statistical inference for plausible network models is di!cult. Here, we demonstrate

that the parameters of a class of network models that include age-, sex-, household-, classroom- and

spatial-e"ects can be estimated from epidemiological data taken from a single outbreak. We do this via a

case study of a well-documented measles outbreak in Hagelloch, Germany in 1861. Using a Bayesian model

choice procedure, we Þnd those properties of the population that play the greatest role in propagating

the outbreak and select the best-Þtting model. We show that an advantage of using a network model

is that it allows us to clearly separate the social contact process in which potentially infectious contacts

are made between hosts from the transmission process describing who actually infected whom in the

outbreak. We estimate the threshold parameter, R0, for this outbreak that summarises the speed at

which the disease spreads. Our methods and custom software are scalable to larger data sets so help to

bring network epidemiology into a rigourous statistical framework.

Introduction

Networks are now commonly used to model interactions between hosts that enable the spread of disease

through a population. Estimating the parameters of these network models from data, however, remains

a signiÞcant challenge. The focus of this paper is on Þtting a plausible network model to real data

to demonstrate that rigourous statistical methods can feasibly be used with this class of models. The

data we Þt hereÑfrom a measles outbreak in Germany in 1861Ñwas very well documented [1] and thus

provides an ideal testing ground for new methods.

There have been several previous analyses of this data set, with di"ering goals and utilizing various

methods. Our analysis di"ers from most previous works in that we assume that the epidemic spreads

across the edges of a contact network; we use the data to infer the properties of this network. These

properties Ñ the factors that inßuence the propensity of individuals to make infectious contacts with one

another Ñ are very important in the study of epidemiology, as the network structure is known to have

a signiÞcant impact on both the spread of an epidemic [2Ð6], as well as on the methods of containing

the spread of these epidemics [6Ð10]. The approach we use is an extension of the methodology presented

by [11], and expanded by [12] and [13]. Our primary aim in this paper is to show that this methodology
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can be extended to incorporate more general types of network models than those previously considered

in the literature. This will allow us to more realistically describe population structures, more fully

understand the mechanisms at play in the spread of epidemics through populations, and potentially o"er

better means of testing alternate strategies for containing these epidemics.

In the next section, we introduce the Hagelloch measles data set and summarize previous analyses of

these data. We go on to describe the Models and Methods used in our analysis, then present Results

including parameter estimates, model selection, estimates of the basic reproduction number and an

assessment of the model Þt. We conclude with a discussion.

Hagelloch measles data and previous work

In 1861, a severe measles outbreak spread through the town of Hagelloch, Germany, ultimately infecting

188 children. [1] recorded many pertinent details of this epidemic including, for each infected individual

in the population, their household, school class, household, age, gender, age, dates of symptom onset,

and various other items. [14] later augmented these data by mapping the spatial coordinates of each

a"ected household and also inferred, for each infected individual, the person who was the putative source

of infection. 188 children aged Þfteen and younger were susceptible to measles during the time of this

epidemic and each of these individuals was indeed infected over the course of this outbreak. Part of this

data set is displayed in Figure 1. See the Models section and [15] or [16] for more detailed descriptions

of this data set and population.

[15] analyze these data using a proportional hazards model. They are interested in the spatial and

temporal e"ects of transmission (and their interaction), and thus consider a spatio-temporal model. The

authors use their model to estimate a parameter that measures the Òspatial scale of spreadÓ and Þnd a

weak spatio-temporal interaction in the data.

[16] analyze the Hagelloch measles data by using a stochastic epidemic model that describes the

transmission rate between two individuals (one infectious and one susceptible) as a function of the indi-

vidualsÕ covariates. In particular they consider the e"ect of belonging to the same household, attending

the same school class, and the physical distance between the houses of the individuals. They seek to

discover which factors are the most important in describing the transmission rate and use a reversible

jump MCMC algorithm to choose among various models. Ultimately, they Þnd that their full model

(i.e., the model incorporating all of the e"ects mentioned above) best Þts the data, and that there is very
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Figure 1. Times of symptom onset for the Hagelloch measles outbreak. The colour shows to which
classroom the infected child belonged.

strong evidence that the classroom for younger children (6 - 10 years old) played a strong role in enabling

the spread of the epidemic.

[17] analyze these data by introducing a three-level mixing model (a generalization of the two-level

mixing model of [8]) and an SEIR epidemic model. Their model assumes a three-level structure, with

each (susceptible) individual belonging to a household, a group (school class in this case), and to the

community as a whole. In their model, an individual may transmit the disease to any individual within

their household, group, or community; the corresponding frequencies of infectious contact for each type

of transmission are modeled by independent Poisson processes with varying rates. The authors produce

estimates for the transmission rates in their model, and also derive estimates ofR! (see [8] for a deÞnition

and interpretation of this threshold parameter) for this epidemic. They compare the log-likelihood of

their model to those of two di"erent two-level mixing models (one which eliminates household-level mixing

and another that eliminates group-level mixing) and conclude that the three-level mixing model o"ers a

substantially better Þt to the data and that both the group and household e"ects were important in the

spread of this disease.

[13] analyze these data by using a stochastic SEIR epidemic model to model the progression of the

disease and an Erdýos-R«enyi random graph model [18,19] to describe the contact network in the population.
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While the authors were successful in estimating the parameters for their models, the Erdýos-R«enyi model

is likely an overly simple representation of the true interaction structure since it does not allow for the

incorporation of the various factors that [16] and [17] found to be material in the transmission of this

disease.

Methods and Models

Model, Notation, and Assumptions

We use an undirected random graph model to describe the contact network in the population of susceptible

individuals. The nodes of the graph, which are labelled 1, . . . , N , correspond to the individuals, while

the edges indicate the presence of a relationship su!cient to spread measles from one person to another.

The speciÞc type of random graph model we consider for this analysis is one in which the probability

of an edge between individualsi and j is given by pij , where

log
�

pij

1− pij

�
=

�

m

! mX { i,j} ,m, (1)

X is a matrix of dyadic covariates, and ! = {! m} is the corresponding vector of parameters.

Most of the dyadic statistics we use for this analysis are binary in nature, taking a value of either 0

or 1, depending on whether the individuals in the dyad share a characteristic. These include e"ects for

household, classroom and gender homophily, with the latter two statistics being computed separately for

each level of the variable (preliminary analysis showed that the e"ects of these covariates were likely to

vary by level). Two other dyadic statistics we consider are continuous in nature: absolute age di"erential

between individuals (measured in units of 5 years) and the spatial distance (measured in units of 100 m)

between the individualsÕ households. Finally, we also include a statistic whose value is 1 for every dyad,

in order to measure the overall propensity of edge formation. By contrast, if we takeX to consist of only

the covariate whose value is 1 for every dyad, the resulting model is the Erdýos-R«enyi model.

These models belong to a class of random graph models known as ERGMs (Exponential-family Ran-

dom Graph Models) or p! models [20], which have seen much use in the Þeld of social nework analysis.

The particular type of model given in Equation (1) is a dyadic independence model, in that the proba-

bility that any dyad will contain an edge is solely a function of the characteristics of the two individuals
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comprising the dyad, and is una"ected by any other dyads.

While G contains all of the potential edges that the disease might travel across, in actuality, the

disease only traverses a subset of these edges. This subset of edges forms a directed transmission tree,

which we denote byP. The root of this tree is the initially infected individual, whose identity is generally

unknown, though we will assume that we know it for the Hagelloch measles data.

To describe each personÕs progression through the course of the disease, we use a stochastic SEIR

(Susceptible-Exposed-Infectious-Removed) epidemic model (see [21] for a thorough description of this

model). We assume that the population initially consists of one infectious individual, while the remainder

of the population is susceptible. Susceptible individuals may become exposed via contact with people in

the infectious class with whom they share an edge inG. The time taken to transmit the disease along

a given edge is assumed to follow an exponential distribution with mean 1/" . We assume that exposed

individuals remain in this category for a length of time described by a gamma random variable with mean

kE#E and variancekE#2
E

, after which time they move to the infectious class. They remain infectious for

a length of time described by a gamma random variable with meankI#I and variance kI#2
I
, after which

time they are removed and play no further part in the epidemic.

The primary data for our model consists of the times at which each individual entered the exposed,

infectious, and removed states. For an individualj , these times are denotedEj , I j and Rj , respectively;

the sets of all such times are denotedE, I , and R , while the collective set of all times is denoted by

T = ( E, I , R ). The Hagelloch measles data contain information that we can use to assign values toI and

R , but we will have to infer E as part of our inferential procedure. Following [15], we assume that each

individual became infectious one day prior to the onset of prodromes and that each individual entered

the removed state three days after onset of rash (or at death, if sooner). We also remove one outlying

data point from the data set (see [13] for an analysis of the e"ects of this outlier).

Inferential and Computational Methods

Following [11], we treat G and P as extra parameters and estimate them along with the other model

parameters in order to simplify the computational burden of updating the parameters in our MCMC

algorithm. See [13] for a derivation of the likelihood function for this model. Apart from the ERGM used

to represent the contact network, the model used in the current aritcle is the same; hence, the likelihood

Ñ given G and P Ñ is unchanged.
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We use a Bayesian inferential approach, assigning independent prior distributions to the parameters.

For the epidemic parameters governing the lengths of the exposed and infectious periods (kE , #E , kI , #I ),

we assign uniform priors with hyperparameters governed by relevant known scientiÞc information re-

garding measles; for" we assign a uniform prior whose domain encompasses the range of biologi-

cally plausible values (see below for further discussion). In particular, we assign$β ∼ Uniform(0, 4),

$kE ∼ Uniform(8, 20), $θE ∼ Uniform(0.25, 1), $kI ∼ Uniform(15, 25), and $θI ∼ Uniform(0.25, 0.75).

For the dyadic parameters governing the network (the! parameters) we assign normal prior distribu-

tions. For each of the parameters corresponding to binary dyadic covariates, we assign an independent

normal prior distribution with a mean of 0 and a standard deviation of 3. The parameters corresponding

to continuous dyadic covariates are also assigned independent normal priors, centered at 0, and with

standard deviations scaled by the corresponding median dyadic statistic value.

Inference is then based on the joint posterior distribution of the model parameters. In order to

produce an approximate sample from this distribution, we use an MCMC algorithm similar to that

described in [13]. The parameters", k E , #E , kI , #I , E, and P are updated exactly as described in [13];

as per the assumptions described earlier, for the Hagelloch measles data, we assume that all values ofI

are Þxed and known. However, the more complicated ERGM network structure used here necessitates

di"erent procedures for updating ! and G.

We update ! using a Metropolis-Hastings step that proposes a new value for! from a mutivariate

normal distribution centered at the current value of ! . The o"-diagonal entries in the variance-covariance

matrix of the proposal distribution are set to zero, while the diagonal entries are tuning parameters. We

then accept the proposal according to the appropriate Hastings ratio.

Because the ERGM we use here is a dyadic-independence model, we can updateG by considering

each dyad separately. Thus, we cycle through each of the
�
N

2

�
dyads, drawing from the appropriate full

conditional distribution which, as a result of the ERGM network structure used here, will depend on !

and X .

We provide a software package namedepinet for the R language [22]; this software is publicly

available on the Comprehensive R Archive Network (cran.r-project.org). Theepinet package includes the

Hagelloch dataset studied in this article, along with routines to perform the MCMC algorithm described

here and various simulation and plotting functions.

We ran the algorithm for 50,000,000 iterations (including an initial burn-in period of 50,000 iterations),
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thinning every 500 iterations, in order to produce at least 2,000 approximately independent samples for

each model parameter.

Results

Network parameter estimates

Here we examine the results of the analysis of the Hagelloch measles data, highlighting the di"erences

between our analysis and that of [13], which used a similar inference approach, but employed a sim-

pler Erdýos-R«enyi network model. Figure 2 summarises the posterior distributions of the parameters in

the network model, ! , via posterior means and 95% highest posterior density intervals. Each of these

parameters can be interpreted as the incremental log-odds associated with a change of one unit in the

corresponding covariate. We use the posterior distribution of these parameters along with Equation 1 to

estimate the probability of a contact existing between any two individuals in the population.

There are a few notable features of these parameter estimates. First, the household and classroom

e"ects are overwhelmingly strong; any two individuals who are in both the same household and classroom

have very high odds of having a contact relationship. (Classroom 1 corresponds to the classroom for

younger children, whereas Classroom 2 is the classroom for the older group of children.) This is quite

plausible, though, considering the extremely contagious nature of measles. There is also a noticeable

gender homophily e"ect, and furthermore, this e"ect appears to vary by gender, with females showing

a stronger tendency to contact each other than males. There is also some evidence of an age e"ect; the

posterior distribution for this coe!cient falls largely below zero, indicating that increasing age di"erentials

result in decreasing odds of contact. The posterior distribution of the parameter related to spatial distance

between houses is roughly symmetric and centered close to zero, indicating that the e"ect of this parameter

is likely neglible.

Model Selection

The posterior distribution of the network parameters (see Figure 2 for summaries of the marginal dis-

tributions of these parameters) indicates that most of the parameters in the model are very likely to

be substantially di"erent than zero, and hence that the corresponding covariates have signiÞcant e"ects

on the network structure. There are a couple of parameters, however, that deserve further discussion.
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Figure 2. The points show the posterior mean while the lines show the 95% highest posterior density
interval for each parameter. The House distance and Age di"erence parameters correspond to
continuous statistics measured in units of 100 metres and 5 years, respectively. The primary model
discussed in the Results section, model 4, excludes the House distance and Age di"erence parameters
(see the Model Selection section).

Recall that the Age Di"erence parameter corresponds to a statistic measuring the absolute value of the

age di"erence between two children. The marginal posterior distribution for this parameter is largely

negative, suggesting that children who are closer in age will tend to be more likely to be in contact than

those with larger age di"erences. Compared to many of the other parameters, though, the e"ect of this

parameter appears to be rather weak. This is likely due to the inclusion of the two Classroom e"ects

in the model. As each classroom consists of children who are close in age, we might expect that much

of the e"ect of age similarity would be captured in the Classroom e"ects. Indeed, when we leave the

Age Di"erence parameter out of the model, the estimates for both of the Classroom parameters increase

accordingly. Nonetheless, the fact that the majority of the marginal posterior distribution for this pa-

rameter is negative indicates that there may be some e"ect due to age di"erence beyond that which can

be explained by the Classroom e"ects.

We see a similar relationship between the House Distance and Household variables. The House
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Distance parameter is estimated to be very close to zero in the presence of the Household variable.

However, when the Household variable is excluded from the model, the House Distance parameter is

estimated to be substantially negative. Taken together, these two results suggest that the bulk of the

spatial e"ect in this data set is due to the increased propensity of individuals within the same household

to be in contact with one another (the ÒnuggetÓ spatial e"ect).

To help determine whether either or both of these parameters belong in our model, we use a reversible

jump MCMC algorithm to perform model selection among four candidate models. Model 1 contains

parameters corresponding to all of the aforementioned factors: edges, household, classroom 1, classroom

2, house distance, male match, female match, and age di"erence. Model 2 contains all of these factors

except for the house distance e"ect, model 3 contains all factors in model 1 except for age di"erence,

and model 4 contains neither the house distance nor the age di"erence e"ect. Each of the four models is

assigned a prior probability of 1/ 4.

We implement the RJMCMC by augmenting our MCMC algorithm to include a model-switching step

in each sweep through the parameters. We move among the four candidate models by proposing model

changes that add or remove one parameter, with the speciÞc proposals depending on the current state

of the model. In all model states, there are two possible other models that we could move to and we

propose moving to each of these two alternative models with probability 0.5.

With the exception of the parameter being added or dropped from the model, the proposed parameter

values are all set equal to the current parameter values. If we are proposing switching from a model

without the age di"erence parameter to a model with this parameter, the proposed value of this parameter

is drawn from a N
�
0, %2

A

�
distribution. If we are proposing switching from a model without the house

distance parameter to a model with this parameter, the proposed value of this parameter is drawn from

a N
�
0, %2

HD

�
distribution. Each proposed switch from one model to another is evaluated according to

the general procedure outlined by [23], though we omit the technical details here.

The Markov chain produced by this RJMCMC algorithm spent the majority (approximately 70%) of

its time in model 4. There was also considerable evidence (about 26% posterior probability) for model

3. Models 1 and 2 each received very little (less than 3%) support. Based on these results and the

discussion above, we proceed with our analysis using model 4, which we believe to be the best and most

parsimonious of the candidate models.
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Degree distribution

We can also use the posterior distributions of the network parameters to construct estimates of the

degree distribution (where ÒdegreeÓ refers to the number of contacts for an individual in a network) for

this population. To do this, we sampled from the joint posterior distribution of the ! parameters and used

these sample values to construct simulated contact networks. The corresponding degree distributions of

these networks are shown in Figure 3. We can clearly see a distinct di"erence in the pattern of the

degree distribution generated by the Erdýos-R«enyi model, as opposed to model 4. SpeciÞcally, the Erdýos-

R«enyi model produces a roughly symmetric distribution of degrees, whereas model 4 produces a degree

distribution that is noticeably right-skewed. This right-skewed shape more closely resembles the shape of

most typical social networks [24], indicating that the more general network model is likely to be a more

realistic description of population interactions.

(a) Model 4 (b) Erdýos-R«enyi Model

Figure 3. Degree distributions for contact networks simulated from the posterior distribution of the
network model parameters for (a) model 4 and (b) the Erdýos-R«enyi model.

Distinguishing between contact and transmission

One of the notable di!culties in using epidemic data to perform inference for the parameters in this model

lies in separating the e"ects of the epidemic parameters from those of the network parameters. This
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problem was discussed in [11] and explored in [13]. One method of assessing the severity of this problem

is to examine the correlations in the joint posterior distribution; as in [13], we consider the correlation

between log (pij) and log(" ). For the Erdýos-R«enyi model, in which pij = p ∀ {i, j }, the correlation

between log (pij) and log(" ) is approximately -0.79, whereas for model 4, the posterior correlations

between log (pij) and log(" ) vary by dyad, but all fall between -0.31 and 0.05. In addition, Figure 4

shows the estimated posterior density for the parameter" for both the Erdýos-R«enyi model and model 4;

clearly, the latter model yields a stronger signal for" . These results suggest that the more general model

better enables us to distinguish the e"ects of the transmission rate from those of the network parameters.
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Figure 4. Estimated posterior distributions for " under model 4 (black, solid line) and the
Erdýos-R«enyi model (red, dotted line).

Transmission tree

In some cases, the transmission tree itself Ñ the sub-network containing information about who infected

whom Ñ may be of interest. Within the MCMC sampling procedure, the transmission tree is treated

like any other unknown parameter and is sampled at each iteration of the algorithm. One such sample is

shown in Figure 5. Inspection of the tree can be highly informative about the behaviour of the epidemic.

Here, for example, we see that individuals typically infected others as soon as they become infectious,
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suggesting that the virus is highly infectious and spread is limited by rapid exhaustion of susceptible

contacts.

We caution, however, that this speciÞc tree is just a single sample from the MCMC run and therefore

must not be over-interpreted. In Figure 5, Host 176 is labelled and appears to play a major role in the

early spread of the virus, causing 16 secondary infections. But the posterior distribution of secondary

infections caused by Host 176, shown in Figure 6, indicates that there is little signal in the data for how

many infections were caused by this host with estimates ranging from 4 to 34. This is unsurprising given

the data and the Þtted model where, provided an edge is present in the contact network, the virus is

equally likely to be transmitted over any edge from an infectious node to a susceptible one.

Basic reproduction number

In the study of epidemics, one of the quantities that is commonly of interest is the basic reproductive

number, R0, deÞned as the mean number of secondary infections caused by a single infectious individual

in a fully susceptible population [6, 21]. Various authors have derived formulas forR0 for situations

in which a stochastic epidemic is assumed to spread over edges of a contact network. [11] gives such a

formula for a type of SIR epidemic and Erdýos-R«enyi network model; [13] slightly modify this formula

for use with an SEIR epidemic model. While these formulas consider the mean degree of the contact

network, they fail to take into account the shape of the degree distribution. [25] describes an approach for

calculating R0 which depends on the Þrst two moments of the degree distribution; [26] discusses a similar

formulation, incorporating the distribution of the length of time spent by individuals in the infectious

state in order to produce a formula for R0. Using this general framework, we can Þnd an expression for

R0 corresponding to the network and epidemic models used here:

R0 =

�
E

�
D 2

�

E[D ]
− 1

�
·
�

1−
�

1
1 + "# I

�kI
�

, (2)

where D is the random variable describing the degree distribution for the individuals in the population.

Using Equation (2) in conjunction with the joint posterior samples generated using our MCMC algorithm,

we can approximate the posterior distribution of R0. Doing so yields 95% posterior credible intervals of

(6.2, 9.8) for the Erdýos-R«enyi model and (11.9, 18.9) for model 4. Thus, model 4 yields a substantially

higher estimate of R0, though both estimates seem reasonable ( [6] gives estimates ofR0 for measles
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Figure 5. An example of a sampled transmission tree. The infection was introduced to the population
at time zero. The horizontal black lines represent hosts in the exposed state, and red lines hosts in the
infectious state. The black vertical lines show who infected whom. Host 176 labelled here is discussed in
the text.

ranging between 5 and 18 for various outbreaks). For both models, the posterior distribution ofR0 was

roughly bell-shaped and symmetric.

It is also interesting to further consider the posterior distribution of " in terms of its relationship

with R0, as per Equation (2). Seeing#I ≈ 1 and kI ≈ 20, the term involving " disappears quickly as"
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Figure 6. Estimated posterior distribution of the number of secondary infections caused by Host 176.

increases and is small for values of" greater than about 0.5. The posterior density for " (see Figure 4)

has a large peak at approximately" = 0 .5, but it is nearly ßat for the values of " greater than 2. This

implies that while the data indicate a strong signal for " , they are also unable to distinguish among the

larger values of" . We might then expect epidemics with transmission rates of, say," = 2 and " = 4 to

look very similar, and simulation indicates that this is indeed the case.

Assessing model Þt

We would also like to assess the quality of the network and epidemic models that we have employed here

to describe the Hagelloch measles epidemic. To this end, we consider simulating 1,000 contact networks

from our network models and corresponding posterior parameter samples, and then simulating epidemics

over these networks, again using epidemic parameter values sampled from the joint posterior distributions

produced by our MCMC algorithm. We then assess the model Þt by comparing the simulated epidemics

with the actual original data. In particular, we compare the number of individuals in the infectious

state over time as the epidemic progresses through the population. Figure 7 shows the actual data as

compared to the simulated epidemics for model 4 as well as the Erdýos-R«enyi model. Overall, the simulated

epidemics produced by model 4 appear to more closely match the original Hagelloch measles data than do

those produced using the simpler Erdýos-R«enyi model. The epidemics produced by the Erdýos-R«enyi model
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spread through the population more slowly than did the actual outbreak. This is particularly noticeable

at days 30Ð40 (where the simulated number of infectious individuals is fewer than the those in the actual

outbreak) as well as at days 50Ð60 (where the simulated number of infectious individuals is greater than

the those in the actual outbreak). In contrast, the more general ERGM matches the actual outbreak

pattern much more closely, with the number of individuals in the infectious state rapidly increasing and

then decreasing at roughly the same time points as in the actual outbreak. We believe that the main

factor contributing to the ability to better match the actual outbreak pattern is the more complicated

structure of the full network model Ñ and the corresponding degree distribution pattern it produces.

With the exception of " , the estimates of the epidemic model parameters were very similar between the

two models; hence we believe that the di"erence in network structure is the primary contributor to the

improved model Þt. We hasten to point out, though, that there are clearly aspects of this epidemic that

even our improved model fails to adequately capture. For instance, the bulk of the simulated epidemics

peak (in terms of number of infectious individuals) slightly (perhaps 3 days) before the peak of the actual

outbreak. Also, the maximum number of infectious individuals in the actual outbreak is somewhat greater

than that produced by the simulated epidemics.

(a) Model 4 (b) Erdýos-R«enyi Model

Figure 7. Number of individuals in the infectious state over time for the (a) ERGM model 4 and (b)
Erdýos-R«enyi model. In each case, the actual Hagelloch measles outbreak data are given by the red line,
whereas simulated data are shown in grey, with boxplots summaries shown at each 5 day time
increment.

It is also interesting to consider simulating the impact of containment strategies on the severity and
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rapidity of the epidemic. In particular, we consider the idea of shutting down the schools in order to try

to contain the spread of the disease. As above, we simulate epidemics using parameter values sampled

from the posterior distribution, but we set the ! parameters corresponding to Classroom 1 and Classroom

2 both equal to zero. Examining the resulting simulated outbreaks, a couple of observations can be made.

First, this containment strategy does little to diminish the ultimate size of the outbreak. The left panel

of Figure 8 shows a histogram of the number of individuals infected in the simulated outbreaks. While

the outbreaks simulated under the containment strategy do indeed tend to be smaller, the di"erence is

very small. (In fact, in both the presence and absence of the containment strategy, the epidemic a"ects

almost all of the 187 susceptible individuals in virtually all of the simulations.) The right panel of Figure

8 gives a histogram showing the day on which the infectious group reaches its maximum size; we use this

as a measure of the speed of the outbreak. We can see that the epidemic does spread considerably less

rapidly in the presence of the containment strategy. These histograms indicate that this containment

strategy, while only minimally e"ective in diminishing the ultimate size of the epidemic, is indeed able

to signiÞcantly slow down the progression of the disease through the population.
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Figure 8. Summaries of simulated epidemic outbreaks in the absence (darker bars) and presence
(lighter bars) of the school closing containment strategy. 1,000 simulations were run for both cases. The
left panel shows the distribution of outbreak sizes, i.e., number of individuals who were ultimately
infected during the course of the epidemic. The right panel shows the distribution of the time (measured
in days since the beginning of the outbreak) that the infectious group reaches its maximal size.
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Discussion

While the problem of inferring the structure of a contact network using only epidemic data is a challenging

one, our results suggest that it is indeed possible to utilize this type of data in order to make meaningful

statements regarding which characteristics have signiÞcant inßuences on the propensity of individuals to

make infectious contacts with one another.

In this paper, we have extended previous work [11Ð13] by considering a more general ERGM to describe

the contact network in a population. This more ßexible framework makes it possible to incorporate any

number of nodal and dyadic covariates, any of which may be categorical or quantitative in nature. We

have shown that we can not only distinguish the (biological) e"ects of the epidemic from the (sociological)

e"ects of the population interactions, but we can also make meaningful statements regarding the contact

structure of the population in question and which factors have substantial impacts on this structure. We

demonstrated our procedure by analyzing a very rich data set describing a measles outbreak in the town of

Hagelloch, Germany in 1861; we found that our results were generally consistent with the relevant known

scientiÞc information as well as with the previous analyses of these data. The results of this analysis also

suggest that this approach has the potential to provide more thorough information regarding population

structure than has previously been considered.

We Þnd that the results of our analysis of the Hagelloch measles data are broadly consistent with those

of [16] and [17]. Direct comparisons between these models is di!cult, since the model structures used

in the various analyses are quite di"erent: [16] used the covariates to model the transmission rate, [17]

used the household and classroom structures to deÞne the levels in their three-level mixing model, and

the present analysis uses the covariate information to model the network structure. We can nonetheless

at least make some qualitative comparisons among the three sets of results.

Our analysis suggests that the Household and Classroom e"ects are the most substantial factors

governing the network structure. [16] and [17] similarly found that these were likely signiÞcant factors in

the spread of this disease; all three analyses Þnd that the Classroom 1 e"ect was more substantial than

the corresponding Classroom 2 e"ect. Our analysis found that the Gender homophily factors also appear

to a"ect the propensity of edge formation, while the evidence for the e"ect of age di"erence was much

weaker; the other two analyses of these data did not include these factors in their model. [16] Þnds a

signiÞcant spatial e"ect in the transmission rate for this outbreak; they use three di"erent forms for the
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spatial e"ect in their model and note that their results are robust to the choice of spatial model form. In

the present analysis, other than the increase in infectious contact due to intra-household relationships,

which we found to be the strongest e"ect, there does not appear to be much of a spatial e"ect in the

data. [17] did not include a spatial e"ect in their model.

There are several further extensions of this approach that may be considered for future analyses.

Whereas the network model considered here is much more general than those previously utilized for this

type of inference, it is nonetheless limited in many aspects; being a dyadic independence model necessarily

limits the range of interaction structures that can be modeled. It may also be useful in some cases to

consider a more sophisticated model for the transmission rate than the simple model used here, which

assumes that the transmission rate is constant, across both time and individuals. One might consider a

rate that is a function of the length of time that an individual has been infected, since for many diseases,

the level of infectiousness is known to vary throughout the infectious period. Further, we assumed that

the infectious period began one day before the onset of prodromes and Þnished 3 days after the onset of

rash. In work not reported here, we reanalysed the data with a longer infectious period, Þnishing 5 days

after the appearance of rash, as in [15]. This change does not greatly a"ect parameter estimates (except

for kI and #I ) but it changes the shape of the observed epidemic curves of the type shown in Figure 7,

suggesting that this lag period could be estimated directly from the data.

We might also consider applying this type of inferential approach to data sets that are larger and

more diverse than those that have been previously studied. While previous studies that have statistically

inferred network model parameters using epidemic outbreak data have mostly considered smaller data

sets [11, 12], this approach is indeed viable for larger epidemics. In addition, our approach also allows

the possibility of incorporating di"erent types of data into the analysis. [13] and [27] discuss potential

methods for and beneÞts from including additional forms of data.
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