
 
DEPARTMENT OF STATISTICS 
The Pennsylvania State University 
University Park, PA   16802   U.S.A. 

 
 
 
 
 
 
 
 
 

TECHNICAL REPORTS AND PREPRINTS 
 

Number 12-04:  October 2012 
 

An Approximation Method for Improving 
Dynamic Network Model Fitting 

 
Nicole Bohme Carnegie1, Pavel N. Krivitsky2, 
David R. Hunter2, and Steven M. Goodreau3  

 
 

 
 
 
 
 
 
 
 
 
 
1Harvard University 
2The Pennsylvania State University 
3University of Washington 



An approximation method for improving dynamic
network model fitting

Nicole Bohme Carnegie1, Pavel N. Krivitsky2, David R. Hunter2, and
Steven M. Goodreau3

1Harvard University
2Pennsylvania State University

3University of Washington

October 28, 2012

Abstract

There has been a great deal of interest recently in the modeling and simulation
of dynamic networks, i.e., networks that change over time. One promising model is
the separable temporal exponential-family random graph model (ERGM) of Kriv-
itsky and Handcock, which treats the formation and dissolution of ties in parallel
at each time step as independent ERGMs. However, the computational cost of fit-
ting these models can be substantial, particularly for large, sparse networks. Fitting
cross-sectional models for observations of a network at a single point in time, while
still a non-negligible computational burden, is much easier. In this paper we show
that a simple adjustment to the cross-sectional network parameters based on the
mean duration of relationships is an adequate approximation to the dynamic pa-
rameters for sparse networks with relationships of moderate or long duration. In
fact, the approximation method works best in precisely those cases where parame-
ter estimation is most likely to fail—networks with very little change at each time
step. We provide both empirical evidence of the applicability of the adjustment and
a theoretical justification for certain cases. We consider a variety of cases: Bernoulli
formation and dissolution of ties, independent-dyad formation and Bernoulli disso-
lution, independent-dyad formation and dissolution, and dependent-dyad formation
models.

Key Words: Dynamic networks, model fitting, exponential random graph models (ERGMs),

separable temporal exponential random graph models (STERGMs), Markov chain Monte

Carlo
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1 Introduction

Dynamic social networks—those in which relations form and break over time—have long

been an area of research interest, both in terms of understanding the nature of the dynamics

themselves (Holland and Leinhardt, 1977; Frank, 1991; Doreian and Stokman, 1997) and

their implication for processes such as the flow of information or disease (Mercken et al.,

2009; Sasovova et al., 2010; Jack et al., 2010; Weerman, 2011). This line of work remains

very active, with a variety of models for dynamic networks being explored (Aral et al.,

2009; Snijders, 2001; Snijders et al., 2007).

Recently, the exponential-family random graph modeling (ERGM) framework has be-

come a popular approach for conducting inference on network structure, due to its general-

izability and its basis in exponential family theory, a common and parsimonious statistical

approach (Strauss and Ikeda, 1990; Wasserman and Pattison, 1996; Robins and Pattison,

2001; Snijders et al., 2006; Robins and Morris, 2007; Hunter et al., 2008a, for example).

For many years, the application of the ERGM framework was limited to static, or cross-

sectional, network datasets. However, recent developments have extended ERGMs to the

modeling of dynamic networks, including the separable temporal ERGM (STERGM) ap-

proach of Krivitsky and Handcock (2010). The STERGM is a form of discrete temporal

ERGM of Hanneke et al. (2010) that independently models the formation and dissolution

of ties over discrete time steps. This allows for independent control of the incidence of tie

formation and of relational duration. In the STERGM framework, it is possible to make use

of independent data on cross-sectional network structure and the duration of relationships

and to model the dynamic evolution of the network in a principled way.

While Krivitsky and Handcock (2010) and Hanneke et al. (2010) develop methods to

fit dynamic ERGMs to panel data using conditional MLE (CMLE), network panel data

are often not available about networks of interest, with sexual partnership networks be-
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ing a major example. Krivitsky (2012a) fits STERGMs to cross-sectional and egocentric

network data using a gradient descent to find the generalized methods of moments estima-

tor (GMME) for the parameters, an approach that has been used in multiple applications

(Morris et al., 2009; Goodreau et al., 2010; Krivitsky, 2009). In each of these cases, pa-

rameters for the relational dissolution process were assumed, and starting values for the

estimation of the formation model were obtained from fitting a traditional static ERGM

on the cross-sectional data. Although this approach produced stable parameter estimates

for these specific cases, in general it suffers from two crucial limitations. First, it can

be very time-consuming and memory-intensive, especially for networks that are large and

sparse and have long relational durations. For example, fitting a STERGM in this way on

a network of 10,000 nodes with a relational duration of about 1100 time steps and a mean

degree of 0.4 takes several days on a high-performance UNIX cluster and is not amenable

to parallelization. Moreover, as is often the case with ERGMs more generally, the model

fitting process can be unstable if the starting values are far from the true parameters, and

may fail to converge even when the model is good.

In this paper, we give technical justification for an approximation method using pa-

rameter estimates from a static ERGM and information on the duration of relationships

to generate starting values for the existing algorithm. In practice, we have found that this

simple adjustment results in substantially better performance than fitting a STERGM us-

ing the traditional approach. Not only does the algorithm generally converge to reasonable

parameter estimates when started from the new values, and does so much more quickly,

but in many cases the adjusted starting values themselves are an adequate estimate of the

STERGM parameters, and it is unnecessary to run the fitting algorithm. The approach

requires the same information used for the existing approach—a single cross-sectional net-

work or target cross-sectional statistcs plus mean relational duration—and is found to work

best in precisely those cases when STERGM estimation is slowest and most unstable.
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The approximation procedure described in this paper was motivated by challenges en-

countered in two large network simulation projects. Both projects attempt to model the

potential effect of interventions to prevent the spread of HIV over sexual networks. We

use one of these projects, which models the HIV epidemic among men who have sex with

men (MSM) in North and South America and the potential effect of a variety of prevention

interventions on those epidemics (Goodreau et al., 2012) as a motivating example in this

paper (see Sections 4.2 and 5.2).

Network dynamics can take many forms; in this paper, we concentrate on examples

in which the set of actors and their attributes remains fixed while their pairwise relation-

ships can stochastically form and dissolve. The processes underlying relational change itself

remain constant, such that there is a stationary distribution for the expected values of net-

work statistics. The approach described in this paper can be easily extended to simulating

networks with changing sets of actors, using the approach of Krivitsky et al. (2011).

In Section 2, we give a short description of the separable temporal exponential random

graph model. In Section 3, we show that a simple correction to the static ERGM parameters

performs well as an approximation to STERGM parameters in the Bernoulli model case.

In Section 4, we extend this to dyadic independence models for formation and dissolution,

with an application to modeling the spread of HIV among men who have sex with men in

the dyadic independence case. Section 5 discusses the utility of the approximation in the

dyadic dependence case through simulations and an extension of the application.

2 Brief description of the STERGM

We first review the ERGM framework for cross-sectional or static networks, observed at

a single point in time. Following the notation of Krivitsky and Handcock (2010), let

Y ⊆ {1, . . . , n}2 be the set of potential relations (dyads) among n nodes, ordered for
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directed networks and unordered for undirected. We can represent a network y as a set of

ties, with the set of possible sets of ties, Y ⊆ 2Y, being the sample space: y ∈ Y . Let yij

be 1 if (i, j) ∈ y — a relation of interest exists from i to j — and 0 otherwise.

The network also has an associated covariate array X containing attributes of the nodes,

the dyads, or both. An exponential-family random graph model (ERGM) represents the

pmf of Y as a function of a p-vector of network statistics g(Y,X), with parameters θ ∈ Rp,

as follows:

Prθ (Y = y | X) =
exp {θ · g(y,X)}

c(θ,X,Y)
, (2.1)

where the normalizing constant c(θ,X,Y) =
∑

y′∈Y exp {θ · g(y′,X)} is a summation over

the space of possible networks on n nodes, Y . Where Y and X are held constant, as in a

typical cross-sectional model, they may be suppressed in the notation. Here, on the other

hand, the dependence on Y and X is made explicit.

In modeling the transition from a network Yt−1 at time t− 1 to a network Yt at time

t, the separable temporal ERGM assumes the formation and dissolution of ties to occur

independently from each other within each time step, with each half of the process modeled

as an ERGM. For two networks (sets of ties) y,y′ ∈ Y , let y ⊇ y′ if any tie present in y′ is

also present in y. Define Y+(y) = {y′ ∈ Y : y′ ⊇ y}, the networks that can be constructed

by forming ties in y; and Y−(y) = {y′ ∈ Y : y′ ⊆ y}, the networks that can be constructed

dissolving ties in y.

Given yt−1, a formation network Y+ is generated from an ERGM controlled by a p-

vector of formation parameters θ+ and formation statistics g+(y+,X), conditional on only

adding ties:

Pr
(
Y+ = y+ | Yt−1; θ+

)
=

exp {θ+ · g+(y+,X)}
c (θ+,X,Y+(Yt−1))

, y+ ∈ Y+(yt−1). (2.2)

A dissolution network Y− is simultaneously generated from an ERGM controlled by a (pos-
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sibly different) q-vector of dissolution parameters θ− and corresponding statistics g−(y−,X),

conditional on only dissolving ties from yt−1:

Pr
(
Y− = y− | Yt−1; θ−

)
=

exp {θ− · g−(y−,X)}
c (θ−,X,Y−(Yt−1))

, y− ∈ Y−(yt−1). (2.3)

The cross-sectional network at time t is then constructed by applying the changes in Y+

and Y− to yt−1: Yt = Yt−1 ∪ (Y+\Yt−1) \ (Yt−1\Y−).

This transition process is ergodic: a series of networks generated from this process

converges to an equilibrium distribution of networks Pr (Yt = y; θ+, θ−). To the extent

that the observed network y is a consequence of the long-run evolution of the social process

being modeled, it may be modeled as a draw from this equilibrium distribution.

Note that the underlying, network-to-network transition process does not change over

time, but rather the set of existing relationships evolves in a manner consistent with

the stochastic process as specified by θ+, θ−, and the particular statistics that make up

g+(y+,X) and g−(y−,X).

Implicit in this model is a Markovian assumption that the survival of a relationship from

time t to t + 1 is, conditional on its existence at t, independent of what happened before

t. Also implicit under a dyadic independence dissolution model is a geometric distribution

for the relational duration for each tie, with mean given by the reciprocal of the probability

of survival for that tie. The probability of survival may vary across dyads; however, under

a strict Bernoulli dissolution model, in which all ties have an equal probability (1 − p) of

survival, relational durations will follow a geometric distribution with mean duration d and

probability of dissolution per time step p = 1/d. This process can be captured by including

a single statistic for the edge count in g−(y−,X); its parameter θ− should equal the log-odds

of a relation surviving the time step (Krivitsky, 2012b), i.e., θ− = log[(1−p)/p] = log(d−1).

We assume from now on that the average duration(s) are specified and thus that θ−
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is known. This situation would arise, for instance, if we wished to simulate a dynamic

network from a cross-sectional observation of a network together with information on the

duration of ties, as with Morris et al. (2009).

Recall that we are fitting a dynamic model only to information about a single cross-

sectional network, with some tie duration information. In that setting, to the extent

that an assumption can be made that the observed network is a draw from the sta-

tionary distribution of the STERGM process (which is ergodic), parameter values θ+

may be estimated using the generalized method-of-moments approach. The generalized

method-of-moments estimator (GMME) in the static ERGM is the solution to the equa-

tion Eθ {g(Y,X)} = g(y,X), where y is the observed network and Eθ {g(Y,X)} is the

expected value of the network statistics of interest under the stationary distribution in-

duced by θ.

Parameter estimation is accomplished by the following steps. First, a set of target

network statistics and initial parameter estimates θ+
0 are obtained, either by direct speci-

fication or through simple estimation methods, such as maximum pseudo-likelihood. The

GMME is then found using the procedure of Krivitsky (2012a).

At the core of the algorithm is the estimation of moments of statistics of interest

Eθ (g(Y,X)) by simulation. If the network evolves slowly, successive networks drawn from

the model are likely to be highly autocorrelated. Thus, to obtain a sufficiently precise

estimate of Eθ (g(Y,X)) we must simulate a very long series of such networks — a time–

consuming process.

As is common in ERG modeling, if the starting values θ+
0 are far from the GMME, the

sampled networks are likely to be degenerate, making it next to impossible to estimate the

necessary moments. Consequently, the algorithm fails to converge in a feasible timeframe.

Thus, we require a value for θ+
0 that produces networks that are reasonably similar to the

target. We introduce one such starting point below in Section 3.
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Throughout this paper, we use the statnet suite of packages (Handcock et al., 2008)

in R (R Development Core Team, 2011) for simulation and model fitting.

3 Bernoulli models

We first consider the simplest case, a STERGM with a Bernoulli model for both formation

and dissolution of edges. In this case, each process is controlled by a single parameter, giving

an equal probability of formation (or dissolution) for all non-edges (or extant edges). We

can derive the value and corresponding GMoME (θ̂+) of the formation parameter θ+ as

a function of network density and relational duration. We wish to justify the following

approximation for a particular fixed θ−:

θ̃+ def
= log

(
m1

1−m1

)
− θ− = logit (m1)− θ− ≈ θ̂+, (3.1)

where m1 is the observed cross-sectional density or the density we want to achieve at

equilibrium.

The development below depends on θ− → ∞, which is reasonable here because θ−

determines average duration of relationships in MCMC time, so we can in practice change

the time scale so that this average is long (e.g., equate an MCMC step to a day instead of

a month).

Since parameters in the STERGM control either formation or dissolution independently,

we can interpret logit−1(θ+) = eθ+
(1+eθ+

)−1 as the expected fraction of null edges that will

become ties, while logit−1(θ−) is the expected fraction of existing edges that will survive

the time step. Take M to be the (fixed) number of possible edges, and let m1(t) be the

(random) count of extant edges at time t divided by M , or the cross-sectional density at t.

Furthermore, m0(t) = 1−m1(t) is the density of non-edges at time t. At equilibrium, the
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average number of ties created and destroyed are the same, so

E[(1− logit−1(θ−)) ·m1(t) ·M ] = E[logit−1(θ+) ·m0(t) ·M ].

Hence,

logit−1(θ+)

1− logit−1(θ−)
=

E[m1(t)]

E[m0(t)]
=

E[m1(t)]

1− E[m1(t)]
=

µ1

1− µ1

,

where µ1 is the expected cross-sectional density of the network. Thus, the formation

parameter we wish to estimate and its corresponding GMoME are given by

θ+ = − log

(
1 + eθ−

µ1

1−µ1

− 1

)
and θ̂+ = − log

(
1 + eθ−

m1

1−m1

− 1

)
, (3.2)

respectively, where m1 is defined as in Equation (3.1). Recall from Section 2 that the

dissolution parameter θ−, as a simple transformation of the average relational duration, is

assumed known.

3.1 Derivation of the approximation

To verify Approximation (3.1), we assume that as the network size M increases, the density

goes to zero, which means that θ− →∞. This assumption is justified by the fact that for

most social phenomena, mean degree is likely to stay roughly constant even as the network

grows (Krivitsky et al., 2011). For example, people living in a town of 10,000 should have

roughly the same numbers of relationships per person as those in a city of 10 million, and

not three orders of magnitude fewer. Combining Equations (3.1) and (3.2), we find that

θ̃+ − θ̂+ = log

(
1 + e−θ−

[
1− 2m1

1−m1

])
, (3.3)
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which clearly tends to zero as θ− → ∞ as long as m1 stays bounded away from 1. Since

m1 = 1 with probability tending to zero as M →∞, we obtain the following result:

Proposition 1. For a Bernoulli formation and Bernoulli dissolution model,
(
θ̃+ − θ̂+

)
P→

0 as M →∞ and θ− →∞.

3.2 Accuracy of approximation

Figure 1 shows the difference between the approximation θ̃+ and the GMoME θ̂+ for den-

sities ranging from 0 to 0.5 and durations ranging from 2 to 25 time steps. We can see that

the accuracy of the approximation improves extremely rapidly with duration and verify

that when µ1 = 0.5, approximation (3.1) is exact. For any network density the approxima-

tion error is less than 0.2 for any duration longer than 6 time units, under 0.1 for durations

over 11 time units and under 0.05 for durations over approximately 20 time units. Recall

that time units here are not tied to calendar time, so a sufficiently long mean relational

duration can be achieved by changing the scale on which relational duration is measured.

If we want relationships to last on average one year, we could use the analytic approxima-

tion with confidence if we parameterized durations in terms of months for model fitting

and simulation. This is limited only by computing resources: as each discrete time step

represents a smaller and smaller amount of time, the number of time steps that need to be

simulated to advance a given time period increases.

Recall that in the proof we require both that duration be sufficently long and network

density be sufficiently small. In fact, as can be seen in Figure 1, it appears that for lower

density a slightly longer duration is required to achieve a good approximation using this

method. This could make the method less useful in very low-density situations, unless

the average relational duration is long. While this result may seem counter-intuitive at

first, it is understandable when we recall that there are two opposing trends with regard
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to the density of the network. On the one hand, the closer the density is to 0.5, the

closer the approximation is to the analytic result regardless of duration. On the other

hand, we have an asymptotic argument that the approximation approaches the analytic

result as the duration increases and density decreases. The figure reveals the reduced need

for asymptotics as the density increases, balanced against the increasing validity of the

asymptotic argument as the density decreases.

Figure 1: Contour plot of approximation error |θ̂+− θ̃| in a Bernoulli formation and disso-
lution model with network density less than 0.5.

4 Dyadic independence models

In this section, we extend the above results to models with dyadic independence terms in

the formation and dissolution models. In a cross-sectional ERGM, dyadic independence

means that the states of all dyads are stochastically independent (Hunter et al., 2008b),

but we do not assume independence across time steps. Note that we are assuming the
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network consists of undirected relations. We can extend this easily to directed networks,

in which case we are not assuming true dyadic independence, but rather independence of

the random variables for each directed edge.

4.1 Derivation of the approximation

We now consider STERGMs with dyadic independence models for formation and dissolu-

tion. Under dyadic independence, the vectors of network statistics are

g+(y+,X) =
∑

(i,j)∈Y

y+
ijW

+
ij and g−(y−,X) =

∑
(i,j)∈Y

y−ijW
−
ij , (4.1)

where W+
ij ≡ W+

ij (X) and W−
ij ≡ W−

ij (X) are arbitrary vectors of attributes for the potential

edge (i, j) of length p and q, respectively, and y+
ij (y−ij) is the indicator that this edge is

contained in y+ (y−). It is common that the W ∗
ij may be written as some function of nodal

covariates defined for i and j. For instance, the Euclidean distance between nodes i and

j may be expressed as a function of their location vectors. In general, however, W ∗
ij may

include entries that cannot be expressed in this way (e.g., some non-Euclidean “distances”

such as shortest road distance or average driving time between locations i and j).

We make the additional assumptions that q ≤ p and the first q elements of W+
ij are

simply W−
ij for all i and j. This assumption may be justified theoretically because in many

processes we are interested in modeling, the formation of relationships is more complicated

than their dissolution. For example, the creation of spousal relationships through marriage

is a complex matching problem, but their dissolution is simplified because there is only one

possible tie to dissolve. In the examples used in this paper, the distribution of relationship

lengths can be reasonably modeled by a simple geometric distribution—i.e., a Bernoulli

dissolution model. Krivitsky and Handcock (2010) discuss this issue further.

Now we consider the case in which W+
ij is categorical, taking a total of K unique values
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as (i, j) ranges over all M possible edges, where we assume that K � M . Let Mk be the

number of possible edges in category k, k = 1, . . . , K, and let Dk ⊂ Y denote the set of all

such edges. Then if we define λ+
k = θ+ ·W+

ij for (i, j) ∈ Dk, we obtain

θ+ · g+(y+,X) =
K∑

k=1

λ+
k

∑
(i,j)∈Dk

y+
ij ,

and so Model (2.2) may be factored into K independent sub-models:

Pr
(
Y+ = y+ | Yt−1; θ+

)
=

1

c+

K∏
k=1

exp

λ+
k

∑
(i,j)∈Dk

y+
ij

 , y+ ∈ Y+(yt−1). (4.2)

Since each of these sub-models is merely a Bernoulli model with parameter λ+
k , we may

follow the same logic of Section 3 to prove a result similar to Proposition 1: For k =

1, . . . , K, let us define m1k to be the observed cross-sectional density among potential edges

in the kth category, i.e., the count of extant edges in Dk divided by Mk, or alternatively

the density we wish to achieve at equilibrium. Also define λ−k = θ−k ·W
−
ij , where (i, j) ∈ Dk,

for the (known) dissolution parameter in the kth category. (Not all of the λ−k values must

be different, but since the categories are determined by the formation covariates, which

include the dissolution covariates, we do know that all (i, j) ∈ Dk will give the same value

of θ−k ·W
−
ij .) Furthermore, let λ̃+

k = logit(m1k)− λ−k and

λ̂+
k = − log

(
1 + eλ−k

m1k

1−m1k

− 1

)
. (4.3)

Then the following proposition justifies the approximation of λ̂+
k by λ̃+

k . Recall from Section

3 that we require Mk →∞ in order to ensure that m1k is bounded away from 1.

Proposition 2. Suppose that the formation and dissolution models have p- and q-dimensional

statistics given by Equation (4.1) where q ≤ p and the first q elements of W+
ij are equal to
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W−
ij for all (i, j) ∈ Y. For k = 1, . . . , K, if Mk →∞ and λ−k →∞, then

(
λ̃k − λ̂+

k

)
P→ 0.

Since logit(m1k) is undefined when m1k = 0 or m1k = 1, the preceding theoretical devel-

opment suggests that the subsets Dk of constant covariate values should be large enough so

that these two extreme values of the density are essentially never observed in practice. Yet

the elegance of this approach lies in the fact that it may be implemented without actually

calculating logit(m1k) for every k, as follows: Since we make the assumption that the first

q statistics in the W+
ij vector are equal to W−

ij , regardless of the values of i and j, then we

find for (i, j) ∈ Dk that

λ+
k − λ−k =

[
θ+ ·W+

ij

]
−
[
θ− ·W−

ij

]
=
[
θ+ − (θ−, 0, . . . , 0)

]
·W+

ij . (4.4)

(Recall that θ− is a sub-vector of θ+ in this scenario.) In other words, when W+
ij ⊇ W−

ij

our approach may be implemented simply by following these steps:

1. Calculate the maximum likelihood estimator, say θ̂, for a cross-sectional ERGM for

the observed network using sufficient statistics W+
ij ;

2. subtract θ− from the components of θ̂ corresponding to the dissolution statistics;

3. call the resulting vector θ̃+ and take θ̃+ as the approximation to the GMoME θ̂+.

Note that a special case of this is a STERGM with a dyadic independence model for

formation and Bernoulli dissolution. In this case, θ− is a scalar, and if we assume that W+
ij

includes the constant statistic equal to unity we can implement the approximation simply

be subtracting θ− from the component of θ̂ corresponding to the constant 1 statistic. This

statistic controls for the overall edge count of the network, which means it is extremely

commonly used in ERGMs, for much the same reason that a standard regression model

generally includes an intercept term.
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Although the theoretical development leading to Proposition 2 relies on W+
ij being

categorical, the implementation just outlined does not. Indeed, we find that in practice,

this method works well for arbitrary W+
ij . We explore an application in which the W+

ij

are continuous in Section 4.2. A further open question, which we explore in Section 5, is

whether a similar technique applies even when the assumption of dyadic independence is

violated.

4.2 Application: Modeling HIV spread among MSM in the US

To demonstrate the use of this approximation method in practice, we discuss a large mod-

eling project examining the potential impact of a variety of behavioral and biomedical

interventions that are now or are soon to be available for men who have sex men (MSM)

in the United States.

In the US and other developed nations, HIV remains concentrated among MSM, with

well over half of all new HIV diagnoses within this community (Hall et al., 2008). Rates

of HIV incidence are on the rise among young MSM, and especially among young Black

and Latino MSM (Prejean et al., 2011). The work reported here is a piece of the baseline

work for a larger NIH-funded project, called PUMA (Prevention Umbrella for MSM in

the Americas). Part of the MP3 (Methods for Prevention Packages Program), the goal of

this work is to better assess the ways in which existing and imminent interventions can

be combined, packaged and tailored for greater efficacy. As a first step in this work, the

project is modeling a wide variety of possible tailored combination interventions; here we

discuss only the baseline model.

To estimate and simulate models of HIV transmission among MSM we use a separable

temporal ERGM to model main partnerships, in order to represent realistic partnership

dynamics. A main partnership here is defined as any relationship in which men feel a close

emotional connection and thus includes many short, dating-type relationships and a smaller
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number of long-term committed partnerships. Casual contacts are modeled using a cross-

sectional ERGM not discussed here. To demonstrate the performance of the approximation

for dyadic independence models, we begin by specifying the partnership formation part of

the ERGM with an edge count term to control density, an individual attribute of race

to allow for differential rates of partnership formation across races, and partnership-level

matching on race, age and preferred sexual role (strictly insertive, strictly receptive, or

versatile). The formation model is thus

log
{
Pr
(
Y+ = y+ | Yt−1; θ+

)}
∝ θ+(e) · e +

∑
r

θ+(ur) · ur +
∑

r

θ+(mr) ·mr

+ θ+(a)
∑
k<l

|(
√

age(k)−
√

age(l))|+
∑
c=r,i

θ+(mc) ·mc,

where yij = the pair of persons i and j, and yij = 1 indicates they are partners; Yc
ij = the

rest of the pairs in the network, excluding the yij pair; e = total number of partnerships

of all types in the network; ur = the number of partnerships of persons of race r; mr =

the number of partnerships with both partners of race r; mc = the number of partnerships

with both partners of role class c (which can take values i = strictly insertive or r = strictly

receptive); k and l represent the actors in each main partnership. The parameters for

matching on sexual role are fixed at negative infinity to enforce a prohibition on sexual

encounters between either two strictly insertive men or two strictly receptive men.

The model for dissolution of partnerships is a simple Bernoulli model with parameter

determined by the average partnership duration. The mean duration is approximately 3.1

years for all main partnerships. This, together with the fact that the model is stepped

forward day by day, yields a dissolution parameter θ− = log(3.1 · 365− 1) = 7.0.

Estimating the formation parameters for this model on a network of 10,000 nodes using

the traditional approach outlined in Section 1 is extremely computationally intensive—on

the order of days to weeks. We use instead the adjustment to the static ERGM fit discussed
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above as parameter estimates. We simulate a network forward in time using the parameters

generated and compare the distribution of simulated network statistics to the target values

taken from the observed network.

Figure 2 shows the standardized deviations of the simulated cross-sectional network

statistics from their target values over the evolution of the network for 10,000 time steps.

Counts of the total number of partnerships of nodes of a certain type are referred to as

“node factor” terms, while counts of edges with both nodes of the same type are referred to

as “node match” terms. Note that the node match terms for role class are excluded from

the plot since they are coerced to be zero at all times. Since the simulation follows all steps

of the MCMC chain without thinning, we expect to see some autocorrelation and “walks”

away from the target over time, however, the observed statistics at each cross-section are

largely within two standard deviations of the target. This indicates that the approximation

has yielded reasonable estimates of the model parameters.
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Figure 2: Standardized deviations of cross-sectional network statistics from target statistics
over 10,000 time steps under dyad independence model.

We expect, given the long duration and the analytic results above, that the approximate
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parameter estimates would be adequate in this case, where the models for formation and

dissolution are both dyadic independence models.

5 Dyadic dependence formation models

Of course, in practice we are more often interested in models that do not fit the dyadic

independence framework. An explicit derivation of the performance of the approximation

in this case is not available, so instead we present here a simulation study examining the

use of the approximation method developed above in a case where the formation model

includes dyad dependent terms and an application of such a model to real data. The

simulation has two parts: first, we compare the values of the parameter estimates from full

STERGM fits to those generated using the approximation. We then simulate networks from

the approximate values and examine how closely they match the network statistics from

the observed network over time. In section 5.2 we re-examine the application to modeling

the spread of HIV among MSM using a dyadic dependence model.

5.1 Simulation study

We began by simulating undirected networks of 1000 nodes with mean degree of 1.2, but

with varying degree distributions. A mean degree of 1.2 allows for a wide range of degree

distributions with the majority of the weight on 0, 1, or 2 ties. For all simulated networks,

30% of the nodes had exactly one incident edge, and the percent with two edges was set

for different networks at 10, 15, 20, 25, 30, 35, 40 and 45%. In a strictly Bernoulli network

with mean degree 1.2, we would expect approximately 22% of the nodes to have degree

2 and about 36% to have degree 1. We consider networks with percentages further from

22% to be in a sense “more dependent” as the model departs further from the independent

Bernoulli case, and expect that these networks will be less well fit by the approximation.
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Note that density in this case is constant over all simulations, and there is no constraint

on degrees other than 1 and 2. We examine the effect of duration by taking the average

duration of ties to be d =5, 10, 15 or 20 time steps.

For each of the 32 scenarios, we simulated 50 network datasets and fit a cross-sectional

ERGM to each with terms for the edge count, number of nodes with degree 1, and number of

nodes with degree 2. Note that the latter two terms are dyad dependent. We next calculated

the approximation estimate of the STERGM parameters by subtracting γ = log(d−1) from

the edges coefficient, as discussed in Section 4.1 for dyadic independence models. Using

these values as a starting point for the Robbins-Monro algorithm, we then ran a dynamic

model fit with the same terms as the cross-sectional model, and compared the resulting

estimates to the approximated values.

Figure 3 gives the mean of the differences between the approximated and estimated

STERGM parameters. We see that the differences are largest for short duration and

very high percentage of nodes with degree 2. The former is to be expected given the

asymptotic nature of our results, and the latter indicates that models that depart more

from dyadic independence are indeed less well fit by the approximation methods. In general,

the magnitudes of the differences for degree terms are under 0.1 for models with at least

moderate duration and degree distributions not too extreme. The edge count term exhibits

differences of a slightly larger magnitude, but generally under 0.3.

The question remains, however, whether the observed differences are large enough to

impact the characteristics of networks simulated from the model, which can be used either

as a measure of goodness-of-fit of the model or for simulation studies. To examine this, we

simulated networks for 5000 time steps from a randomly selected vector of the approximated

parameter estimates. Figure 4 shows the percent difference between the mean network

statistics from the last 4000 time steps (the first 1000 were discarded as burn-in) and the

target statistics for each network.
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Figure 3: Average differences between approximated model coefficients and fitted coeffi-
cients over 50 simulations under dyad dependence model.
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Figure 4: Percent deviations of cross-sectional network statistics from target statistics over
4,000 time steps under dyad dependence model.
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We can see that the bias in the cross-sectional network statistics decreases consistently

with longer duration, regardless of the percent of nodes that are of degree 2, as we would

expect given the asymptotic results for dyad independence models. On the other dimension,

we see the bias tending to increase as the percent of nodes of degree 2 moves further

from what we would expect under a Bernoulli model. Thus, the approximation can be

quite bad for short durations or strong dependence induced by very non-Bernoulli degree

distributions, but for the majority of the scenarios the differences are rather small. It also

seems likely that in practice few applications would have durations even as short as those

we use in this simulation, and often much longer, making it more likely that the use of the

approximation method will be satisfactory.

In a case where the approximation is not statisfactory, however, using the estimates from

the approximation results in radically improved fitting time for the STERGM. For example,

in the case from these simulations with a mean duration of 5 time steps and percent degree

2 of 35%, we see that the simulated network statistics using the approximated values are off

by 20–30%, so we would likely not want to use the approximation itself as our parameter

estimates. If we run a traditional STERGM estimation approach for this case, it takes over

five hours to complete the fitting process. If, however, we use the approximated values as

the starting point for the fitting algorithm, the fit completes in 1.7 minutes.

5.2 Application: Modeling the spread of HIV among MSM in

the US, revisited

In Section 4.2, we demonstrated the use of the adjustment to the static ERGM fit as

model parameters in a dyadic independence model. In reality, the degree distribution is of

vital importance when modeling sexual networks, particularly when modeling the spread

of disease over said networks. We would like to add a term for the number of men in two
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simultaneous relationships to control for the tendency for or against forming concurrent

partnerships.

The new formation model is then given by

log
{
Pr
(
Y+ = y+ | Yt−1; θ+

)}
∝ θ+(e) · e +

∑
r

θ+(ur) · ur +
∑

r

θ+(mr) ·mr + θ+(d2) · d2

+ θ+(a)
∑
k<l

|(
√

age(k)−
√

age(l))|+
∑
c=r,i

θ+(mc) ·mc,

where we have added a term d2 = the number of actors in exactly two main partnerships

at a given time. Note that this is a dyad dependent term. The model also enforces a

constraint of no more than two main partnerships at a time, another form of dependence.

Figure 5 shows the standardized deviations of the simulated cross-sectional network

statistics from their target values over the evolution of the network for 10,000 time steps

using the dyadic dependence model. The parameter values used for network simulation here

are those given by the approximation to the full dynamic model fit given in Section 4.1.

In this case, the simulated network including the dyad dependent degree 2 term has fewer

extreme deviations from the target statistics than were observed in the dyad independence

case. This should not be over-interpreted, since each simulation is only one realization of a

stochastic process. We can say, however, that the network evolution over time is consistent

with the cross-sectional data used to generate the target network statistics when using the

approximation in place of a full dynamic model fit.

6 Conclusion

This paper introduces a useful approximation method to generate estimates of the STERGM

dynamic model parameters, which is much less computationally intensive than the full algo-

rithm used for estimation in the dynamic model. We assume that dissolution parameters are
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Figure 5: Standardized deviations of cross-sectional network statistics from target statistics
over 10,000 time steps under dyad dependence model.

fixed as a function of the average durations of relationships, and approximate the STERGM

formation parameters by subtracting these dissolution parameters from the corresponding

elements of the vector of parameter estimates obtained by estimating the formation model

with a cross-sectional ERGM. Even in cases where the approximation itself is inadequate

as an estimator, using the approximation estimates as a starting point for the algorithm

greatly increases the likelihood of convergence in the estimation procedure. The proofs

given in this paper assume dyadic independence models and that the model terms are cat-

egorical, but as we see in the examples and in practice, the approximation works well even

for non-categorical terms and dependence models in many cases. This work might therefore

be a starting point for further theoretical and empirical exploration of this method.

The asymptotic nature of the results suggests that they are most useful for duration

sufficiently long and density sufficiently small. In one sense, it is quite easy to deal with the

issue of duration; since duration here refers to MCMC steps, we could in theory rescale the

relational duration so that one MCMC step equals an arbitrarily small unit of real time.
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An additional advantage of equating an MCMC step to a small unit of time is improved

plausibility of the assumtion of separability of the formation and dissolution processes

within MCMC step. This poses computational difficulties, however, if the model is to be

used to simulate dynamically evolving networks, as it increases the number of simulation

steps needed to produce a particular duration proportionately. In some cases, such as the

example used in the application, there may be an external reason why equating an MCMC

step to a particular time unit is necessary. Given the likelihood of computational or other

constraints, further work is needed to ascertain in exactly which cases it is appropriate to

use the approximation method, and when it is advisable to fit the STERGM.

As we demonstrate in the HIV modeling examples, it is important when using this

approximation to perform model diagnostics by simulating one or more dynamic networks

from the model parameters and checking to see that the cross-sectional network statistics

are varying stochastically about the target statistics. This is particularly true if one wishes

to use the approximation as a final parameter estimate instead of merely a starting point

for a full dynamic model fit.

The initial development of ERGMs offered enormous promise as a generalized framework

for the statistical modeling of cross-sectional social networks. However, years of research

and development were needed to identify and overcome a variety of issues to ensure that

their practical application lived up to this promise. The recent proposed STERGM class

of models offers similar promise for dynamic social networks. Since STERGMs build upon

ERGMs, there is reason to hope that most of the issues that will arise in their application

will parallel those that have already been investigated, and thus will be quick to resolve.

At least one new issue has already arisen, however—the particularly high computational

burden needed to fit these models under certain conditions—which this paper explains and

then identifies a solution to. We hope that resolving this issue will position STERGMs to

be of as great general applicability and usefulness as ERGMs have proven. Our concurrent
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and successful application of STERGMs in a number of ongoing research projects, made

possible by the work laid out in the paper, suggest to us that this will indeed be the case.
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